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Abstract

Simple hydrodynamic models for describing the Richtmyer-Meshkov (RM)

growth and the Rayleigh-Taylor (RT) instability are tested by simulation.

The RM sharp boundary model predictions are compared with numerical

simulations of targets with surface perturbations or stationary intensity per-

turbations. Agreement is found in the overall trends, but the specific behavior

can be significantly different. RM growth of imprint from optically smoothed

lasers is also simulated and quantified. The results are used to calculate

surface perturbations, growth factors, and laser imprint efficiencies. These

in turn are used with standard RT growth formulas to predict perturbation

growth in multimode simulations of compression and acceleration of planar

and spherical targets. The largest differences between prediction and theory

occur during ramp-up of the laser intensity, where RT formulas predict more

growth than seen in the simulations.
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I. INTRODUCTION

Because of the wide scope and complexity of the physics involved, inertial confinement

fusion (ICF) targets are traditionally designed with elaborate radiation hydrodynamic codes.

The intent is to create a target that is highly compressed yet resistant to hydrodynamic in-

stabilities. The first criterion can easily be satisfied using a one-dimensional (1D) hydrocode,

but the analysis of hydrodynamic instability requires two-dimensional (2D) and/or three-

dimensional (3D) codes to simulate. For many years, we have had available simple growth

formulas for the Rayleigh-Taylor (RT) growth of instabilities, with some indication that

they were fairly accurate in describing the growth seen in both simulations and experiments

[1–4]. These formulas can be applied to the acceleration stage of the target drive, but not to

the earlier stage during which the target is being compressed. In recent years however, new

Richtmyer-Meshkov (RM) models and theory have been developed that can describe the

formation and evolution of perturbations during the compression [5–9]. With these recently

developed RM models, the potential now exists to describe the hydrodynamic instability

growth from start to finish by using a 1D hydrocode, extracting the relevant parameters for

use in the models, and predicting the 2D or 3D instability levels. This paper addresses the

question of whether or not this is a fruitful exercise.

First, we use the Richtmyer-Meshkov theory to describe the evolution of surface perturba-

tions or stationary laser imprint during target compression. Analysis of surface perturbation

growth provides us with a growth factor, defined as the ratio of the perturbation amplitude

at the end of imprint to the initial amplitude. Imprint analysis gives us an “imprint effi-

ciency” which allows us to calculate the equivalent surface finish induced by stationary laser

nonuniformity, and thus the corresponding end-of-imprint perturbation. We compare the

results of this theoretical model to simulation results.

Unfortunately, current laser drivers in ICF applications are optically smoothed, and so

are not stationary but inherently time-dependent. This temporary inconvenience is overcome

by allowing our fast2d hydrocode [10] to simulate the problem and provide a numerically
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generated imprint efficiency for optically smoothed light.

The Richtmyer-Meshkov phase ends when the laser intensity begins to increase and

the ablation surface begins to accelerate. About this same time, the possibility of feedout

becomes important. Feedout theory describes the development of rear surface perturbations

that propagate to the ablation surface. Very recent analytic results [11] can be used to

quantify this contribution. Feedout ends when the rarefaction wave from the rear surface

arrives at the front-side ablation surface.

As the Richtmyer-Meshkov phase ends, we turn to the Rayleigh-Taylor growth formulas

to provide our predictions. These use as their seed the perturbations that have been gen-

erated during RM. We use a variety of dispersion relations to describe this growth, from

simple models to more sophisticated ones. For the target we use here (in the large Froude

number limit) all the formulas give very similar results. We also compare these formulas to

the simulation results.

This modeling and comparison will be done in the context of describing a relatively

simple target, shown in Fig. 1. This is the directly-driven pure DT spherical target initially

developed by Verdon [3,12] for the National Ignition Facility (NIF). It is composed of a

spherical shell of DT ice covered by a thin (few microns thick) outer membrane of plastic

(which we will ignore here). The DT serves both as the the ablator and the fuel for the

burn. Other directly-driven designs differ mainly in the ablator constituency, the pellet

aspect ratio (the radius normalized to the shell thickness) and the specifics of the drive laser

pulse; however, all ICF target designs share the same basic imprint-and-instability physics

we discuss here. This NIF target is driven by a laser pulse with a relatively constant foot

(10 TW) followed by a rapid rise to a constant main pulse (∼450TW). The foot serves to

compress the pellet shell and ready the target for acceleration. When the target is nearly

compressed, the laser intensity rapidly rises to its main power level where acceleration and

Rayleigh-Taylor begins.

We find that the largest discrepancy between the simple models and the behavior ob-

served in the simulation occurs during the transition between the RM and RT growth. While
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the observed perturbations grow somewhat during this time, the growth is significantly less

than predicted. There are also smaller discrepancies between the models and simulation

during the RM phase, but this can be ascribed to deviations from the idealized assumptions

of the RM model.

II. RICHTMYER-MESHKOV PHASE

The ‘sharp boundary model’ (SBM) of Richtmyer-Meshkov growth [13,8,9] is used to

describe the evolution of the initially small amplitude perturbations during the compres-

sion of the target. This model uses an undriven acoustic wave equation to describe the

fluid between the ablation and shock front surfaces. Much of the physics is concentrated

in the boundary conditions of this equation, which include Rankine-Hugoniot jump condi-

tions at the shock front, mass and momentum continuity at the ablation surface, and an

isothermal ablation front. In addition, intensity perturbations are assumed to be smoothed

thermally (∼ exp(−kd)) over the distance between the ablation and absorption surfaces.

The parameters needed for this model are the pellet density and γ (ratio of specific heats),

shock pressure (7 Mbar), ablation velocity (Vabl = 2× 105), density scalelength at the ab-

lation surface (Lmin = 0.3µm), and the temperature exponent of thermal conduction (we

use ν = 2 instead of Spitzer’s 5/2 [4]). In addition, the coronal blow-off velocity is needed

when calculating imprint from intensity perturbations. These derived parameters all exhibit

some time dependence during the RM phase in the simulations (for instance, due to the

laser decoupling from the ablation surface), so the values quoted here are appropriate time

averages.

A. Surface finish imperfections

A priori surface imperfections on the target form a primary contribution to RT seeding.

Outer surface perturbations are most important since they have the most time to grow

before acceleration begins. We have performed many single mode calculations of these
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surface perturbations in planar geometry to test the agreement with the basic theory. Planar

geometry is used because the RM theory was developed with this assumption; it is expected

to accurately model the spherical pellet during the imprint time as no significant convergence

effects take place during this stage.

Theoretical predictions and simulation results for the DT target are shown in Fig. 2 for

various perturbation wavelengths. The same general behavior is seen in both the simulation

and theory: an initial increase in amplitude to a saturation point and the approximate time

to phase reversal are reproduced by both methods. (Phase reversal is the time at which

the areal mass perturbation passes through zero and becomes negative with respect to the

perturbation before. Thick target regions become thinner regions and vice-versa). After

about 4 ns, the simulation behavior diverges as the laser pulse in these simulations begins to

rise towards full power; current Richtmyer-Meshkov theory is unable to handle this situation.

RT theory is more applicable in this case because the ablation surface begins to accelerate.

At the later times, evolution at smaller wavelengths is oscillatory. Although the mass

perturbation can temporarily become zero as it passes through a phase reversal, the per-

turbation energy and momentum are quite finite. For instance, the SBM model predicts

that the perturbed kinetic energy is fairly constant during this period. In light of this be-

havior, we (somewhat arbitrarily) define the imprint measure as the maximum value of the

induced areal mass between the times of 2-4 nsec. We believe that this measure will provide

a reasonable assessment of the true perturbation level then.

Using this metric, we define a growth factor, given by the perturbation amplitude at

the end of the imprint phase divided by its initial amplitude. As the response during this

stage is linear, this growth factor allows one to predict the RT seed due to arbitrary surface

perturbations. Fig. 3 shows that the theory and the simulations agree that growth for

wavelengths larger than 100 µm decreases with wavelength in a similar manner. At shorter

wavelengths, however, the simple model predicts growth independent of wavelength while

the simulations show a peak near 50µm and a fall-off for smaller wavelengths. We will use

the numerically generated growth factor for further comparisons in the following sections.
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B. Laser beam imprint

Important contributions to the RT seeding also come from perturbations that develop

due to spatial imperfections of the driving pulse, which is customarily known as ‘imprint’. In

most ICF scenarios today, this imprint is due to residual nonuniformities from an optically

smoothed laser that uses a spatially varying intensity profile which changes completely on

the laser coherence time scale, tc (typically a picosecond). While the instantaneous intensity

distribution is very rough, the average over times much larger than the laser coherence time

is much smoother, with perturbations decreasing as
√
tc/t.

We address laser imprint here as a two part problem. First, we calculate the imprint

due to stationary intensity perturbations. This includes the physics of how the laser light is

converted to pressure perturbations and how those pressure perturbations are transported to

the ablation surface and beyond. Stationary imprint can in principle be described straight-

forwardly by the SBM, so we can compare theory and simulation. Secondly, we consider the

effect of optically smoothing the laser, which current SBM models do not address.

1. Stationary imprint

We first run the simulations for many instances of single mode intensity perturbations.

The perturbation wavelength is varied in the range of 100 µm while its amplitude is held con-

stant at 1% of the average intensity. An additional parameter that describes the absorption-

to-ablation distance (and accounts for the coronal thermal smoothing) is needed for the

theory. Following convention, we choose the rate at which this absorption-to-ablation dis-

tance increases to be determined by the blow-off velocity Vb in the underdense plasma. Since

the blow-off velocity in an actual plasma increases with the distance from the ablation sur-

face, we use the standard prescription [13] that Vb = rD(λ)Va. rD(λ) is the ratio of the

ablation density to the blow-off density a distance λ away from the ablation surface. As

the absorption region convects away from the ablation surface with this blow-off velocity,
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the pressure perturbation at the ablation surface decays as exp(−kVbt). (We have used

an alternative prescription of a constant Vb [� 2 × 106cm/s], but this results in a longer

decoupling time at longer wavelengths and a worse match with simulation). The theoretical

results are compared to the simulation in Fig. 4; differences between the simulation and

theory are again most significant in the wavelength range less than 200µm. In contrast to

the surface imprint case, the shorter wavelength simulation imprint stabilizes and reverses

phase earlier than the theoretical prediction. At longer wavelengths, the simulation growth

appears to be slower than theory. We believe that the simulation behavior implies that the

physics involved in intensity driven imprint is more complex than the simple model allows,

with its approximation of a constantly increasing separation distance combined with thermal

smoothing.

Imprint can also be equated to surface perturbations using the concept of ‘imprint effi-

ciency’ [3]. The imprint efficiency is the amplitude of initial surface perturbation that would

give rise to the same perturbed mass as an intensity perturbation of 100%:

E(λ) =
δmI(λ, δI/I0)

δms(λ, a0)

a0

δI/I0
(1)

where a0 is the initial surface perturbation amplitude and δI/I0 is the normalized intensity

perturbation amplitude. The results (Fig. 4) show that a 1% intensity variation is equivalent

to � 1.6µm surface finish (0.4gm− µm/cm3) at ∼ 200µm, with smaller values for larger or

smaller wavelengths. It peaks at about ∼ 200µm because perturbations of this wavelength

tend to reach their first point of saturation when this measurement is taken (2-4 ns); shorter

wavelengths saturate and begin to decay before this time, while longer wavelengths have not

yet grown to the point of saturation.

The observed imprint decrease for long wavelengths is dependent on the imprint metric

used. At large wavelengths and fixed imprint time, the mass redistribution responsible for

the imprint observed here goes to zero as ∼ cstimprint/λ. In contrast, if surface perturbation

amplitude (e.g., ablation surface contour) is used to measure imprint, the response at long

wavelengths to steady laser perturbations tends to a finite constant amplitude, which is larger
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than the response at smaller wavelengths. This asymptotic behavior is due to the ablation

and shock fronts moving at different local velocities due to the (local) pressures associated

with the intensity perturbation. There is little time for mass redistribution to occur, and

the perturbations will have a ”ribbon-like” structure with the ablation front and shock front

perturbation in phase. We find this asymptotic behavior occurring here at wavelengths

greater than about 200 µm. During the later Rayleigh-Taylor stage, these ribbon distortions

will grow by mass redistribution and result in detectable areal mass variations. We do not

find such surface perturbations without mass perturbation for optically smoothed imprint,

since the front and rear surfaces are not in phase with each other even at long wavelengths;

in this case both surface and areal mass perturbations decrease as the wavelength increases.

2. Optically smoothed imprint

Next we calculate the evolution of perturbations due to optically smoothed light. This

light is defined by its bandwidth (∆ν ∼ 1/tc), spatial coherence, lens f-number (f/#),

and laser wavelength. Its spatial structure encompasses a wide range of wavelengths, with

the mean intensity amplitude at a given wavelength determined by the f/# and spatial

coherence. We begin to study this in the simplest manner by performing simulations of

single mode incoherent fluctuations. Our incoherence model selects a single mode out of our

standard induced-spatial-incoherence (ISI) model [14]. Here, the amplitude of any mode

has a random Gaussian-shaped probability distribution and a uniform random phase (with

respect to the transverse coordinate and time). Both of these parameters change discretely

and randomly at each coherence time. This produces an intensity that smooths with time

as
√
tc/t, like the ISI and smoothing-by-spectral-dispersion (SSD) optical smoothing meth-

ods. ISI and SSD are sufficiently alike in their incoherence properties that this model will

sufficiently describe either.

Full raytracing is not used for the optical smoothing simulations here because of con-

cerns with the fluctuations in the resulting energy deposition competing with the statistical
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fluctuations due to the laser light incoherence. Instead we use a hybrid 1D/2D model that

raytraces the light along the axial (x direction) density variation at each transverse y co-

ordinate separately, ignoring transverse density gradients (except those associated with the

geometry). This method correctly accounts for the increased standoff of the laser absorp-

tion from the critical surface due to oblique ray propagation, but not for potential refraction

effects due to local transverse density gradients.

With the preceding incoherence model, the spectrum of intensity perturbations at the

target plane has a mean value [14]:

〈I(κ)〉 =

√
1− κ

Nz

π

4
Iavg (2)

where κ = |k| /kmax, Nz = kmaxDspot/2π, kmax = 2π/fλ0, λ0 is the laser wavelength, Dspot is

the laser spot diameter, and k �= 0. This spectrum is a 1D spectrum (i.e., from a cylindrical

lens) and is appropriate for 2D simulations that only describe one transverse dimension.

The analogous spectrum for two transverse dimensions due to a circular lens is:

〈I(κ)〉 =
√
π − 2 sin−1 [κ] − 2κ

√
1− κ2

Iavg

2Nz
(3)

where κ =
√
κ2

x + κ2
y. This is similar in shape to the 1D spectrum, but the mean fluctuation

level of any mode is smaller by ∼
√
Nz. When summed over the surface of a plane however,

the total σrms of the 2D spectrum is identical to the 1D spectrum summed over the single

dimension. In both 1D & 2D, these formulas are reduced by
√
2 when polarization smoothing

is used and by
√
Nb when Nb beams are overlapped on the target.

Because of the random statistical nature of incoherence, single mode calculations of

optically smoothed light must be performed many times in order to yield an average expected

value for smoothing. For example, we have simulated single modes of optically smoothed

light while varying the perturbation wavelength from 25 µm to 800 µm. To get a sense

of the run-to-run variation, we repeated the calculations five times each, and recorded the

response from each group of five runs. As Fig. 5 shows, the results show a scatter that can

vary by as much as a factor of five. Averaging these results and accounting for the intensity
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fluctuation level in these simulations gives the optically smoothed imprint efficiency. Like

stationary intensity imprint, it is defined by equating a 100% mean (instantaneous) intensity

fluctuation with a surface perturbation yielding the same response. This quantity is shown

in Fig. 5(b) as a function of the perturbation wavelength. The largest response is once again

found near ∼ 200µm, due to the same considerations responsible for the similar peak in

stationary imprint.

Consider the implications of this imprint efficiency for the pure-DT pellet. Assuming a

spot size = 0.338 cm (the DT pellet diameter), f/30 optics, 32 beam overlap, and the use of

polarization smoothing at 1.0 THz laser bandwidth, the intensity distribution is determined

using Eq. (2) or (3) above. Multiplying this spectrum by the imprint efficiency gives the

equivalent surface finish spectrum. Summing over all � modes, this yields the prediction that

the total σrms for the equivalent surface finish over the DT pellet surface due only to this

optical smoothing is � 800Å for the 1D spectra and � 840Å for the wavenumber-averaged

2D spectrum. This contrasts with an earlier study [3] which predicts an rms surface finish

modulation from imprint to be 110Å.

One other interesting parameter that can be derived from these results is an implied

smoothing time. This smoothing time is found by assuming that the plasma response to

the incoherent light is the response to the random instantaneous intensity perturbations

averaged over a time tsmooth:

δmsmooth(k, t)

δmsteady
≡ δI/Ismooth

δI/Isteady

√
tc

tsmooth
(4)

This implied smoothing time is shown in Fig. 6, where it is compared to an acoustic smooth-

ing time ta ∼ λ/cs scaling (cs is the sound speed). Acoustic scaling assumes that the response

at a given wavelength is proportional to the fluctuation level averaged over the hydrodynamic

response time of that wavelength. The scaling here does not appear to be that simple.
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III. FEEDOUT

There is an additional contribution to the imprint due to transport of perturbations on

the target rear surface to the front ablation surface. This process, called feedout, begins when

the first shock breaks out of the target and ends when the resulting rarefaction wave arrives

at the ablation surface. Earlier theoretical work addressed the long-wavelength limit of

feedout [15], but a recent analysis [11] of this process for arbitrary perturbation wavelengths

has found a closed form solution for the growth factor, defined as the mass modulation on

the ablation surface at the end of feedout divided by the mass modulation on the target’s

rear surface at the beginning of feedout, for a target of initial thickness L0 and perturbation

wavelength λ:

δm(L0/λ)/δm0(λ) =

2(3 − γ)(γ + 1)

γ + 1 − ( γ − 1)β

∞∑
j=0

(−1)j

j!


1
4

(
γ + 1

3 − γ

)(
2π

(
γ − 1

γ + 1

)
L0

λ

)2



j
Γ
[

2(γ−1)
3−γ

j + 3
2

]
Γ
[

γ+1
3−γ

j + 1
2

]

× (γ − 1)(2j − β) + γ + 1

[(γ − 1)j + 1]
{
4 [(γ − 1)j + 1]2 − (γ − 1)2

}

(5)

where

β =
2γ(γ + 1)

2γ(γ − 1) + (2γ)1/2(γ − 1)3/2
.

The mass modulation at the beginning of feedout is due to surface perturbations that are

on the rear of the target when shock breakout occurs. The spectrum of this growth is shown

in Fig. 7 for γ=5/3. The largest growth is about a factor of 4 occurring at the wavelength

λ = L0/6 (about 60 µm for the DT-ice target). The resulting perturbation from feedout

will add linearly to the front-side perturbations considered earlier.

The simulations presented here did not include initial rear surface perturbations, so the

only feedout source for these simulations is due to the structured shock interface from the

front surface. By the time the shock front reaches the rear surface, its perturbation is typi-

cally much smaller than the ablation front perturbation (except for the largest wavelengths,
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λ ≥ 500µm which have minimal growth factors). In addition, the laser intensity is beginning

to increase and accelerate the ablation surface even before the shock breaks out the target

rear surface, so the ablation front perturbations are already susceptible to significant RT

growth before feedout can occur. For these reasons, we will not consider feedout contribu-

tions in the results here, except to note that it can be appreciable and is quantifiable in

general.

IV. MULTIMODE SIMULATIONS AND RAYLEIGH-TAYLOR GROWTH

Now consider calculations of the entire compression and acceleration of the target, for

which the Rayleigh-Taylor instability becomes important. Because RT can quickly become

nonlinear, we use multimode calculations that allow the different modes to interact. First

we present planar simulations of the imprint and acceleration phase in the planar version of

the DT-ice target; then we show simulations of the spherical pellet. Finally we compare the

simulations to experimental results.

We remark here that our use of areal mass perturbations (
∫
ρdr) as an instability measure

in this paper is a departure from the customary practice of focusing only on the front surface

perturbation. To be sure, the classic analysis of the RT instability shows the growing mode

peaked at the front surface. However, most experimental measurements as well as the figure

of merit in an imploding ICF pellet involves the mass density integrated through the direction

of movement. Furthermore, any mass nonuniformity inside or at the rear of the accelerated

shell will soon show up at the front surface (see the discussion of feedout). Finally, use of

integrated mass can account correctly for the case where the shell density varies with time,

bypassing the complication that a uniformly compressed perturbation amplitude will vary

inversely with the local density.

Two specific all-DT target simulations in planar geometry were performed: one begins

with a 500Å randomly rough surface driven by a perfectly uniform laser and the other

with a perfectly uniform target driven by a single 0.5 THz optically smoothed laser beam
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with polarization smoothing. These were multimode calculations but with a limited number

of modes: simulations were 200 µm wide with 128 transverse points, so that modes from

25µm - 200µm were resolved with at least 16 points per mode (our criterion for adequate

resolution). The black curves on the plots in Fig. 8 show individual modes taken from the

multimode calculations. The characteristic growth and oscillation of the imprint phase is

clearly seen, as it was in Fig. 2. At about 4 ns, when the laser intensity begins to increase,

the modes slowly begin to grow exponentially, but only after a time delay of a nsec or more.

The Rayleigh-Taylor instability then clearly takes over until about 7 nsec, when the modes

begin to saturate and turn over. At this time, the target begins to decompress rapidly, as

there is no spherical convergence to maintain compression.

Also shown on these figures is the predicted mode level using the simulated growth factor

(Fig. 3) and the RT dispersion relation used by Weber [3]:

γ =
√
kg/(1 + kL) − 3kVa (6)

The values of acceleration (g), ablation density scalelength (L), and ablation velocity (Va)

used in this formula are time dependent and given by one-dimensional averages taken from

the simulations. The standard Haan prescription [16] is used to handle weak nonlinear

behavior. The predicted imprint is shown as the flat first section of the curve; it ends at 4

nsec. The imprint level matches the maximum of the simulated mode amplitude between 2

and 4 ns quite well, which shows that numerical mode coupling in the linear growth phase

is not an issue. After the imprint, the predictions and simulations separate. In almost every

case, the growth seen in the simulation lags that in the simple formula. This time lag, which

varies from 1-2 ns and occurs as the laser pulse is increasing rapidly, corresponds to the

period during which the outer ablation surface is being accelerated at a higher rate than

the target inner edge. The target compression is time-dependent and nonuniform, and the

RT dispersion relations (derived under more ideal conditions) do not satisfactorily describe

the evolution during this time. In all wavelengths simulated, the growth during this stage

is less than the RT predictions. Similar results are seen for the optically smoothed driven
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target, the only difference being that the imprint level is less accurate due to the statistical

laser realization in this particular simulation.

The failure of the model at the beginning of the RT growth phase is not due to the

particular dispersion relation chosen. We have also tried the simpler Bodner-Takabe relation

[1,2] (γ = 0.9
√
kg−3kVa) as well as the more complex formula developed by Sanz and Betti in

the large Froude number limit [13,4], and there is very little difference in the predicted growth

for this target. In addition, the use of areal mass instead of surface perturbation amplitude

as a point of comparison does not contribute to this mismatch, but instead decreases it. The

outer surface density increases along with the acceleration, which can lead to a corresponding

increase in the areal mass perturbation even without a concomitant increase in the surface

amplitude.

Finally, we turn our attention to the original problem that began this study, the spherical

all-DT NIF target (Fig. 1). We performed a simulation of this pellet using both a 500Å

surface finish and a 1 THz optically smoothed laser consisting of 32 polarization-smoothed

overlapped beams focused onto the pellet with f/30 optics and a spot size equal to the initial

pellet diameter. The simulation section was the width of an �=12 mode and used 256 points

in the transverse direction, so that modes from �=12 to �=192 were resolved with at least

16 points per mode. The transverse boundary conditions were periodic, and a wavenumber-

averaged 2D optically-smoothed spectrum was used that preserves the total rms fluctuation

level of the intensity spectrum:

〈I(κ)〉 =

√
κ
(
π − 2 sin−1 [κ] − 2κ

√
1− κ2

)√ π

4Nz
Iavg (7)

In contrast to the line-out spectra represented by Eqs. (2) or (3) which peak as κ → 0,

this averaged spectrum peaks at κ � 0.4, or � � 400 thus giving more weight to the

smaller wavelength intensity perturbations. Pellet density images during the compression

and implosion, along with a plot of σrms(t) from the simulation are shown in Fig. 9. The

simple model predictions are also shown on the same graph. As in the planar targets, the

predictions match the level of imprint in the foot and the growth rate during the high power
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part of the pulse, but again a delay time is seen between the growth predicted by the simple

models and the growth seen in the simulation. The saturation of the predicted growth occurs

at about 7 nsec, midway through the drive pulse, while the simulation shows a later and

more extended period of growth, with the maximum areal rho-dr occurring at stagnation.

(Although the areal mass perturbation in the simulation becomes larger than the total

original areal mass, the shell does not completely break up because convergence has greatly

increased the total shell rho-r at this time. The maximum simulation amplitude is about

20% of the total rho-r, occurring at about 8.2 nsec.) Due to convergence and nonlinearity,

we do not expect the quasilinear modifications to the predicted growth to remain accurate.

We strongly urge caution when extrapolating these simulation results to expectations

of the actual 3D evolution behavior of a real DT pellet. As the spectrum of target modes

is limited to 1D transverse variations, the resulting mode amplitude in any single mode is

significantly larger here than on an actual pellet. While linear growth rates should be the

same as in the 3D case, the absolute mode amplitude and nonlinear interactions cannot

properly be taken into account in 2D.

The real test of the simulation code, and the final arbiter of truth, is in comparison with

experiment. As a recent example of the ability of our code to simulate measurable real-world

quantities accurately, we show a comparison of the code results to a series of experiments

that used the Nike KrF laser to accelerate a 150µm thick target composed of a low density

resorcinol formaldehyde foam (50 mg/cc) into which liquid Deuterium was wicked. The

target was coated by a 2 µm thick layer of Kapton onto which a 60 µm wavelength, 1D

1000Å deep sine-wave ripple was imposed. It was accelerated by a two-step 1-THz pulse

from the Nike laser, composed of a 4 ns main pulse at about 8 × 1013W/cm2 preceded by

a ∼4 ns foot at about 5% of the main intensity. X-ray framing cameras recorded emission

from a backlighter that was created by illuminating a Mg sample with 12 Nike beams [17].

The backlighter emission passes through the target and is reflected and focused by curved

crystal imagers that pass only a small band (∼10eV) of x-rays near the 1.45 KeV Mg line

back to the cameras [18]. The target images are recorded at different times during the target
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acceleration, and are analyzed using the known material opacity to determine the areal mass

nonuniformity. These results are plotted in figure 10. Simulation of this experiment using

the fast2d hydrocode produced the solid curve shown in the figure. The simulation results

match well, and are within the experimental error bars.

V. CONCLUSIONS

We have compared single and multimode simulations to simple Richtmyer-Meshkov and

Rayleigh-Taylor theoretical models. The Richtmyer-Meshkov sharp boundary model is used

for early times to compare to surface perturbation and stationary intensity imprint evolution.

Rayleigh-Taylor dispersion relations are used as the intensity increases and the ablation

surface is accelerated. We have applied these models to predict the instability evolution in

an all-DT direct drive ICF target.

The simulations of Richtmyer-Meshkov exhibit similarities and differences compared to

the theoretical predictions. In general, the simulation and theory agree that the largest

RM response occurs for perturbation wavelengths near 100 µm. For the case of surface

perturbation seeded RM, the simulations show a larger response for shorter wavelengths

(λ < 100µm) compared to the model. In this same regime, the SBM predicts a growth

factor that is relatively independent of wavelength (Fig. 3). At the larger wavelengths, the

responses are comparable and decrease as the wavelength increases. Evolution details like

the initial phase reversal time for the mode and the subsequent oscillatory behavior can be

different in detail but are similar in general.

For the case of stationary intensity-driven RM perturbations (imprint), the simulations

tend to show earlier saturation behavior and smaller amplitudes than the model at the

shorter perturbation wavelengths (λ < 70µm). At larger wavelengths (λ > 200µm) sim-

ulation and theory give a similar response. The largest discrepancy appears in the peak

range λ ∼ 70− 200µm, where the simulations show a larger imprint response (Fig. 4). The

simulated RM response is thus more peaked than the theoretical predictions. Imprint of
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optically smoothed lasers is also simulated and its imprint efficiency is found (Fig. 5) to be

peaked in the same 100µm range as the stationary imprint. Comparison of these results

to the stationary intensity imprint also yields an implied smoothing time that varies in the

range of 0.1-1.0 nsec.

Finally, the computed growth factors and imprint efficiency from the RM phase are

used with the dispersion relations of several RT models to predict the total instability

growth throughout the target compression and acceleration. We find that this type of

simple modeling overestimates growth compared to simulations. The main cause of this

overestimation is the failure of the models to adequately describe the transition between RM

& RT. Using the RT model to describe the instability evolution at the accelerating ablation

surface at this time leads to larger perturbation growth than seen in the simulations. During

this transition, the laser intensity is constantly increasing, target compression is variable,

and neither the RM model nor the current RT theory is strictly applicable. Potentially, a

better ansatz could be developed than was used here, which could perhaps yield a better

predictive capability with these existing models. However, we believe that the results here

illustrate that separate analysis of this transition phase may be a fruitful area for future

theoretical attention.
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FIGURES

FIG. 1. An all-DT direct drive pellet similar to that planned for the National Ignition Facility

(NIF). The Richtmyer-Meshkov growth phase lasts until about 4 nsec, when the laser pulse begins

to increase. Shock breakout from the inner target surface occurs at about 5.8 nsec.

FIG. 2. Comparison of theoretical and simulated surface perturbation growth as a function of

time for a variety of perturbation wavelengths. The black line indicates simulation results, the

gray is the simple model.

FIG. 3. Growth factor of surface perturbations. The black line is from simulation results, the

gray from the model.

FIG. 4. (a) Comparison of imprint and theory vs time for different wavelengths; (b) The imprint

efficiency of stationary intensity perturbations. The black line indicates simulation results, the gray

is the simple model.

FIG. 5. (a) Imprint vs wavelength for optically smoothed light. (b) Imprint efficiency for optical

smoothing vs wavelength.

FIG. 6. The implied smoothing time found by comparing optically smoothed imprint to sta-

tionary imprint.

FIG. 7. The feedout growth factor (Eq. 5 in the text.) is worst at the wavelength λ = L0/6,

for targets of original thickness L0.

FIG. 8. Comparison of individual mode growth for nonuniform surface finish (top five plots)

and of optically-smoothed driven imprint (bottom five plots). The black line indicates simulation

results, the gray is the simple model.
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FIG. 9. (a) Images of shell density at six different times during the implosion; (b) comparison

of σrms vs. time for the simulation (black curve) and the predictions using imprint model plus

Weber RT growth formula (dash-dotted), Bodner-Takabe formula (gray), and Sanz-Betti formula

(dash).

FIG. 10. Experimental results (square cross icons) of surface perturbation growth compared to

the fast2d hydrocode simulation.
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